18 research outputs found

    MOPRD: A multidisciplinary open peer review dataset

    Full text link
    Open peer review is a growing trend in academic publications. Public access to peer review data can benefit both the academic and publishing communities. It also serves as a great support to studies on review comment generation and further to the realization of automated scholarly paper review. However, most of the existing peer review datasets do not provide data that cover the whole peer review process. Apart from this, their data are not diversified enough as they are mainly collected from the field of computer science. These two drawbacks of the currently available peer review datasets need to be addressed to unlock more opportunities for related studies. In response to this problem, we construct MOPRD, a multidisciplinary open peer review dataset. This dataset consists of paper metadata, multiple version manuscripts, review comments, meta-reviews, author's rebuttal letters, and editorial decisions. Moreover, we design a modular guided review comment generation method based on MOPRD. Experiments show that our method delivers better performance indicated by both automatic metrics and human evaluation. We also explore other potential applications of MOPRD, including meta-review generation, editorial decision prediction, author rebuttal generation, and scientometric analysis. MOPRD is a strong endorsement for further studies in peer review-related research and other applications

    Automated scholarly paper review: Technologies and challenges

    Full text link
    Peer review is a widely accepted mechanism for research evaluation, playing a pivotal role in scholarly publishing. However, criticisms have long been leveled on this mechanism, mostly because of its inefficiency and subjectivity. Recent years have seen the application of artificial intelligence (AI) in assisting the peer review process. Nonetheless, with the involvement of humans, such limitations remain inevitable. In this review paper, we propose the concept and pipeline of automated scholarly paper review (ASPR) and review the relevant literature and technologies of achieving a full-scale computerized review process. On the basis of the review and discussion, we conclude that there is already corresponding research and implementation at each stage of ASPR. We further look into the challenges in ASPR with the existing technologies. The major difficulties lie in imperfect document parsing and representation, inadequate data, defective human-computer interaction and flawed deep logical reasoning. Moreover, we discuss the possible moral & ethical issues and point out the future directions of ASPR. In the foreseeable future, ASPR and peer review will coexist in a reinforcing manner before ASPR is able to fully undertake the reviewing workload from humans

    Capsaicin Protects Cardiomyocytes against Anoxia/Reoxygenation Injury via Preventing Mitochondrial Dysfunction Mediated by SIRT1

    Get PDF
    Capsaicin (Cap) has been reported to have beneficial effects on cardiovascular system, but the mechanisms underlying these effects are still poorly understood. Apoptosis has been shown to be involved in mitochondrial dysfunction, and upregulating expression of SIRT1 can inhibit the apoptosis of cardiomyocytes induced by anoxia/reoxygenation (A/R). Therefore, the aim of this study was to test whether the protective effects of Cap against the injury to the cardiomyocytes are mediated by SIRT1. The effects of Cap with or without coadministration of sirtinol, a SIRT1 inhibitor, on changes induced by A/R in the cell viability, activities of lactate dehydrogenase (LDH), creatine phosphokinase (CPK), levels of intracellular reactive oxygen species (ROS), and mitochondrial membrane potential (MMP), related protein expression, mitochondrial permeability transition pore (mPTP) opening, and apoptosis rate in the primary neonatal rat cardiomyocytes were tested. Cap significantly increased the cell viability, upregulated expression of SIRT1 and Bcl-2, and decreased the LDH and CPK release, generation of ROS, loss of MMP, mPTP openness, activities of caspase-3, release of the cytochrome c, and apoptosis of the cardiomyocytes. Sirtinol significantly blocked the cardioprotective effects of Cap. The results suggest that the protective effects of Cap against A/R-induced injury to the cardiomyocytes are involved with SIRT1

    Annealing novel nucleobase-lipids with oligonucleotides or plasmid DNA based on H-bonding or π-π interaction:Assemblies and transfections

    Get PDF
    Lipid derivatives of nucleoside analogs have been highlighted for their potential for effective gene delivery. A novel class of nucleobase-lipids are rationally designed and readily synthesized, comprising thymine/cytosine, an ester/amide linker and an oleyl lipid. The diversity of four nucleobase-lipids termed DXBAs (DOTA, DNTA, DOCA and DNCA) is investigated. Besides, DNCA is demonstrated to be an effective neutral transfection material for nucleic acid delivery, which enbles to bind to oligonucleotides via H-bonding and π-π stacking with reduced toxicity in vitro and in vivo. Several kinds of nucleic acid drugs including aptamer, ssRNA, antisense oligonucleotide, and plasmid DNAs can be delivered by DXBAs, especially DNCA. In particular, G4-aptamer AS1411 encapsulated by DNCA exhibits cellular uptake enhancement, lysosome degradation reduction, cell apoptosis promotion, cell cycle phase alteration in vitro and duration prolongation in vivo, resulting in significant anti-proliferative activity. Our results demonstrate that DNCA is a promising transfection agent for G4-aptamers and exhibites bright application prospects in the permeation improvement of single-stranded oligonucleotides or plasmid DNAs

    The Inhibition of LPS-Induced Oxidative Stress and Inflammatory Responses Is Associated with the Protective Effect of (-)-Epigallocatechin-3-Gallate on Bovine Hepatocytes and Murine Liver

    No full text
    This study aimed to evaluate whether (-)-epigallocatechin-3-gallate (EGCG) alleviates hepatic responses to lipopolysaccharide (LPS)-induced inflammation and oxidation. Isolated bovine hepatocytes and BALB/c mice were used for LPS challenge and EGCG pretreatment experiments in vitro and in vivo. LPS-challenged (6 μg/mL) hepatocytes exhibited increased levels of NF-κB (p65 and IκBα) and MAPK (p38, ERK, JNK) phosphorylation as well as increased binding activity of p65 to target pro-inflammatory gene promoters, and these effects were suppressed by pretreatment with 50 μM EGCG. Moreover, the reduction in Nrf2 signaling and antioxidant enzyme activities induced by LPS stimulation were reversed upon EGCG treatment. In vivo experiments demonstrated the protective role of EGCG in response to GalN/LPS-induced mortality and oxidative damage. Together, our results suggest that EGCG is hepatoprotective via inhibition of MAPK/NF-κB signaling and activation of the Nrf2 cascade. This information might help design strategies for counteracting hepatitis in ruminants and monogastric animals

    The Characteristics of Multilocus Sequence Typing, Virulence Genes and Drug Resistance of <i>Klebsiella pneumoniae</i> Isolated from Cattle in Northern Jiangsu, China

    No full text
    Klebsiella pneumoniae (K. pneumoniae) induced bovine mastitis has been becoming one of the dominantly pathogenic bacteria in cases of bovine mastitis, and is threatening public health through dairy products. In order to explore the characteristics of multilocus sequence typing (MLST), virulence gene carrying, and the relationship between virulence genes and the antibiotic resistance of Klebsiella pneumoniae from dairy cattle in northern Jiangsu, 208 dairy milk samples were collected from four dairy farms in northern Jiangsu. A total of 68 isolates were obtained through bacterial isolation, purification, and 16S rDNA identification. Eleven virulence genes were detected by specific PCR. The susceptibility of the isolates to antimicrobials was analyzed using the Kirby–Bauer method. The Pearson correlation coefficient was used to analyze the correlation between the presence of virulence genes and the phenotype of drug resistance. ST 2661 was the most prevalent type of K. pneumoniae (13/68, 19.1%) among the 23 ST types identified from the 68 isolates. The virulence gene allS was not detected, but the positive detection rates of the virulence genes fimH, ureA, uge and wabG were 100.0%. Notably, the detection rates of genes rmpA and wcaG, related to the capsular polysaccharide, were 4.4% and 11.8%, respectively, which were lower than those of genes related to siderophores (kfuBC, ybtA and iucB at 50.0%, 23.5%, and 52.9%, respectively). The K. pneumoniae isolates were sensitive to ciprofloxacin, nitrofurantoin, and meropenem. However, the resistance rate to penicillin was the highest (58/68, 85.3%), along with resistance to amoxicillin (16/68, 23.5%). The results revealed the distribution of 23 ST types of K. pneumoniae from the milk from bovine-mastitis-infected dairy cows in northern Jiangsu, and the expression or absence of the virulence gene kfuBC was related to the sensitivity to antibiotics. The current study provides important information relating to the distribution and characteristics of K. pneumoniae isolated from dairy cows with clinical bovine mastitis, and is indicative of strategies for improving the treatment of K. pneumoniae-induced bovine mastitis

    Analysis of Non-Genetic Factors Affecting Wood’s Model of Daily Milk Fat Percentage of Holstein Cattle

    No full text
    This research paper aimed to explore the characteristics of Holstein cattle’s milk fat percentage lactation curve and its influencing factors. The Wood model was used for fitting the lactation curve of 398,449 DHI test-day milk fat percentage records of Holstein cows from 2018 to 2020 in 12 dairy farms in Jiangsu province, and the influencing factors—including farm size, parity, calving season, calving interval, and 305-days milk production—on the parameters of the lactation curve were analyzed. The results showed that the non-genetic factors such as dairy farm size, calving season, parity, calving interval, and 305-days milk yield have a significant impact on milk fat percentage (p R2 of the daily milk fat percentage curve was 0.9699; the lowest milk fat percentage was 3.54%; the time to reach the lowest milk fat percentage was 126 days; and the persistence of milk fat percentage was 3.59%. All of these factors explored in this study fit at different levels above 0.96. The Wood model performed well in the fitting and analysis of the milk fat percentage curve of Holstein cattle in Jiangsu Province. This study provides a reference for improving the milk fat percentage of Holstein cattle

    Melatonin Maintains Homeostasis and Potentiates the Anti-inflammatory Response in Staphylococcus aureus-Induced Mastitis through microRNA-16b/YAP1

    No full text
    Staphylococcus aureus is a highly infectious pathogen and is a considerable threat to food hygiene and safety. Although melatonin is thought to exert an ameliorative effect on bovine mastitis, the regulatory mechanisms are unclear. In this study, we first verified the therapeutic effect of melatonin against S. aureus in vitro and in vivo, a screening of differentially expressed miRNAs and mRNAs among the blank, and S. aureus and melatonin + S. aureus groups by high-throughput sequencing identified miR-16b and YAP1, which exhibited 1.95-fold upregulated and 1.05-fold downregulated expression, respectively. Moreover, epigenetic studies showed that S. aureus inhibited miR-16b expression by methylation (increased DNMT1 expression). Additionally, the DNMT1 expression level was significantly decreased by melatonin treatment, which might indicate that the inhibition of DNMT1 by melatonin reduces the effect of S. aureus on miR-16b. The flow cytometry, scanning and transmission electron microscopy, EdU assay, and cell morphology results indicated that miR-16b in bovine mammary epithelial cells (in vitro) and in mice (in vivo) can modulate the maintenance of homeostasis and potentiate the anti-inflammatory response. In addition, YAP1 was demonstrated to be the target gene of miR-16b through quantitative real-time polymerase chain reaction, western blot, RNA immunoprecipitation, and functional assays. This study indicates that melatonin inhibits S. aureus-induced inflammation via microRNA-16b/YAP1-mediated regulation, and these findings might provide a new strategy for the prevention of bovine mastitis, facilitating further studies good of zoonotic diseases caused by S. aureus infection
    corecore